Regularity bounds for a Gevrey criterion in a kernel-based regularization of the Cauchy problem of elliptic equations
نویسندگان
چکیده
Abstract. This Note derives regularity bounds for a Gevrey criterion when the Cauchy problem of elliptic equations is solved by regularization. When utilizing the regularization, one knows that checking such criterion is basically problematic, albeit its importance to engineering circumstances. Therefore, coping with that impediment helps us improve the use of some regularization methods in real-world applications. This work also consider the presence of the power-law nonlinearities.
منابع مشابه
Propagation of Gevrey Regularity for Solutions of Landau Equations
There are many papers concerning the propagation of regularity for the solution of the Boltzmann equation (cf. [5, 6, 8, 9, 13] and references therein). In these works, it has been shown that the Sobolev or Lebesgue regularity satisfied by the initial datum is propagated along the time variable. The solutions having the Gevrey regularity for a finite time have been constructed in [15] in which ...
متن کاملTikhonov Regularization by a Reproducing Kernel Hilbert Space for the Cauchy Problem for an Elliptic Equation Tikhonov Regularization by a Reproducing Kernel Hilbert Space for the Cauchy Problem for an Elliptic Equation
We propose a discretized Tikhonov regularization for a Cauchy problem for an elliptic equation by a reproducing kernel Hilbert space. We prove the convergence of discretized regularized solutions to an exact solution. Our numerical results demonstrate that our method can stably reconstruct solutions to the Cauchy problems even in severe cases of geometric configurations.
متن کاملBoundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملThe Gevrey Hypoellipticity for Linear and Non-linear Fokker-planck Equations
Recently, a lot of progress has been made on the study for the spatially homogeneous Boltzmann equation without angular cutoff, cf. [2, 3, 8, 22] and references therein, which shows that the singularity of collision cross-section yields some gain of regularity in the Sobolev space frame on weak solutions for Cauchy problem. That means, this gives the C regularity of weak solution for the spatia...
متن کاملAn effective method for approximating the solution of singular integral equations with Cauchy kernel type
In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Math. Lett.
دوره 69 شماره
صفحات -
تاریخ انتشار 2017